Search results

Search for "carbon contamination" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • dicobalt hexacarbonyl tert-butylacetylene (CCTBA) can be used to deposit metallic cobalt in the temperature range from 125 to 200 °C [15]. As an exception, Kim et al. have reported the ALD of Co with Co2(CO)8 in the temperature range of 70 to 110 °C. However, this process resulted in a significant carbon
  • contamination [16]. Thermal ALD processes operate usually at temperatures higher than 150 °C [17][18][19][20][21]. Characteristic for ALD processes, the growth rate is mainly independent of the substrate temperature in a specific temperature range, often denominated as ALD window. Within this range, the
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • different devices with varying levels of carbon contamination may not exactly have the same size and purity, even if the EB parameters are set to be identical. On the other hand, carbon contamination in the produced nanostructures may not always be a disadvantage, particularly if the properties of the
PDF
Album
Full Research Paper
Published 22 Sep 2022

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • good stoichiometry for this film. The general spectra of ZnO samples are shown in Figure 4, where peaks corresponding to C 1s, O 1s, and Zn 2p were identified for all investigated samples. The presence of photoelectron signals, ZnO electrons, and carbon contamination at the binding energy value of
  • . This is a possible explanation for the decrease in carbon peaks as the thickness of the oxide films increases. It must be said that no metallic elements are identified; however, they are in oxide bonds just like in oxide compounds. This carbon contamination obviously decreases as the film thickness
  • percentage composition allowed us to observe the stoichiometry of the sample and a depletion of oxygen (48.38%) in the oxide film. For the 250 nm thick SiO2 sample, and given the percentage data, following carbon contamination (according to the XPS results) the amount of O K increases (as compared to the 200
PDF
Album
Full Research Paper
Published 19 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • yielded only traces of gold (2–3 atom % [19]). Within the series of gold acetonate complexes, the highest gold content has been achieved with Au(tfac)Me2 when water was co-injected as an oxidizing agent during the deposition (91 atom % gold) [26]. To circumvent carbon contamination, a series of inorganic
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • current during EDX was 5 nA and the sample was mounted at a working distance of 7.5 mm and tilted by 35° to maximise the EDX signal. The system was plasma cleaned before the EDX measurements were taken to minimize carbon contamination. UHV deposition The UHV deposition experiments were performed by
  • play a crucial role here. The two potential sources of carbon in the SEM deposits are the precursor molecules themselves or hydrocarbon contamination in the SEM chamber. The latter is clearly absent in the UHV system. To endeavour to reduce the contribution of carbon contamination from the SEM chamber
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. Keywords: carbon contamination; electron induced reactions; focused electron beam induced
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • . Carbon contamination had a pronounced negative influence on the activity of the EBID deposits. The CNT yield on these deposits was low and post-treatment with oxygen plasma was necessary to clean the EBID Co deposits before the corresponding CVD experiment could be successfully conducted with sufficient
  • CNT yield [21]. The existence of the corresponding carbon contamination was traced back to deposits from the residual gas in the high-vacuum (HV) environment and the dissociation of the carbon-containing precursor ligands [19]. With our “surface science approach” to FEBIP, that is, working in an ultra
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID). Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be
  • only slightly increased under deposition in reactive environments [43][44]. Logically, it would seem that the best way to avoid carbon contamination is to use a carbon-free precursor. Indeed, FEBID experiments using the PF3AuCl precursors yielded almost pure Au structures [32], but this precursor was
  • content of the deposit. The carbon contamination, which mainly originates from the imperfect chemical decomposition of the precursor, is a strong limitation for possible usage of FEBID nanomaterials in optical, magnetic, electronic or information storage devices. It is therefore essential to improve their
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • procedure considering the incident photon flux by division by a spectrum of a clean, freshly sputtered Au substrate. The energy was scaled using the signal of a carbon contamination of a gold grid with a characteristic peak at 284.81 eV. To obtain the molecular orientation of the thiolates/selenolates
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017
Graphical Abstract
  • were deposited by rheotaxial growth and vacuum oxidation (RGVO) and analyzed for the susceptibility to ambient-air exposure and the subsequent recovery under vacuum conditions. Particularly the surface chemistry of the layers, stoichiometry and level of carbon contamination, was scrutinized by X-ray
  • carbon contamination. After air exposure the relative [O]/[Sn] concentration increased to 1.80 while maintaining a relatively low level of carbon contaminants. Subsequent UHV annealing led to a relative [O]/[Sn] concentration comparable to the pristine samples. The oxidation resulted in a variation of
  • (C–C and C–H components), and from a C–O component, which most likely originates from adsorbed CO/CO2, and from C–OH groups [24][25][26]. However, the overall detected C 1s signal is at a level of about 1.3 (peak-to-noise), which means that the carbon contamination of the RGVO SnO2 nanolayers is
PDF
Album
Full Research Paper
Published 27 Feb 2017

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • XPS and their formation is accompanied by a complete degradation of the oxalate ions for which a mechanism is proposed here. Overall, the results show that copper(II) oxalate is a favorable material for the electron-induced formation of metallic copper nanoparticles on surfaces with little carbon
  • contamination. The reduction of the material under high-vacuum conditions also offers the perspective of adding capping layers in situ via an electron-beam induced deposition process from the gas phase [1] thus addressing the problem of Cu oxidation [52]. (a) Representative RAIR spectra of surface-grown copper
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • the flux due to the carbon contamination of the optical elements and the effect of the second order radiation (double photon energy, without using any filter). Workflow for NEXAFS-TXM: A data set of images at different photon energies is taken with the HZB-TXM. A NEXAFS spectrum can be generated out
PDF
Album
Review
Published 27 Feb 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • highest exposure times revealing low carbon contamination in the sub-nanometer range. After successful fabrication the deposits were not e-beam inspected but immediately transferred to the AFM system. AFM and KFM experiments have been performed with a Dimension 3100 System (Bruker Nano), equipped with a
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • be balanced with a reasonable acquisition time to minimize the carbon contamination that can also be an obstacle especially when studying carbon-based nanomaterials. In addition, it is more difficult to study interfaces consisting of CNTs than those in semiconductor thin films due to the curvature of
PDF
Album
Review
Published 02 Jul 2014

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • , 80 °C and rt as well as the T-ALD sample (200 °C) were measured. The XPS survey spectra (Figure 3) of PE-ALD samples (200 °C, 80 °C, rt) and of the T-ALD (200 °C) sample depict mainly Al and O contributions but also carbon contamination. The latter will be discussed below. Now we focus on the details
  • influenced by charged species within the films. Carbon contamination (EDX, XPS, ellipsometry) In order to discuss the integration of carbon atoms into the films we conducted energy dispersive X-ray spectroscopy (EDX), XPS C1s core level spectroscopy, and spectroscopic ellipsometry. The chemical composition
  • occur with the formation of COO and H2O [1] which may also support secondary reaction pathways [18] leading for example to carbonates and carbon contamination. It has to be pointed out that the XPS measurements were performed ex-situ and the results might be strongly influenced by surface contamination
PDF
Album
Full Research Paper
Published 08 Nov 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • with an average size of a few micrometers were formed. X-ray diffraction measurements confirmed the primarily {111} textured surface orientation of the grains with a 3.5° wide angular distribution. The grains have random azimuthal orientations. In order to remove carbon contamination, all samples were
  • in the UHV HIM we can exclude false volume estimations due to carbon contamination. The change of the surface profile with ion fluence for a primary energy of 35 keV is shown in Figure 5a. After a fluence of 4.2 × 1017 cm−2, the surface is still comparatively flat (dashed line), but already for a
PDF
Album
Full Research Paper
Published 24 Jul 2013

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  •  6a shows an overview TEM cross-section image of an aggregated silver nanoparticle on a glass substrate. The EDX spectrum of this nanoparticle (Figure 6b) reveals silicon and silver as the main constituents. The carbon peak in the low-energy part of the spectrum results from unavoidable carbon
  • contamination, and the copper signal originates from the TEM grid. Furthermore, an oxygen peak is detected in the low-energy part of the EDX spectrum. The oxygen is due to the SiO2 from the glass substrate. Figure 6c–e represent the local distribution of the chemical elements silicon (green), silver (purple
PDF
Album
Full Research Paper
Published 18 May 2012

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • for the XPS spectra. For example, to arrive at a reasonable signal-to-noise ratio for the Co-2p peaks, a data acquisition time of 12 h is required. Even under UHV conditions such a long exposure of a sample surface to X-rays results in the built-up of a small amount of carbon contamination, which, by
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities